Sabtu, 07 Agustus 2010

Mengapa lebih baik untuk tidak mengocok telur berlebihan sebelum memasak?

Dapatkah Anda menjelaskan pada saya mengapa orang-orang sering mengatakan bahwa lebih baik tidak mengocok telur berlebihan sebelum memasaknya? Saya juga ingin tahu apa yang terjadi ketika telur dikocok?

Jawaban:

Mr. Shinichi Takagi, yang sedang mempelajari telur, bersedia menjawab pertanyaan di atas.

Mengapa lebih baik untuk tidak mengocok telur secara berlebihan?
Ketika Anda menggoreng telur, sebaiknya dihindari untuk mengocok berlebihan seperti yang pernah Anda dengar. Sebaliknya, jika Anda hendak membuat masakan seperti Chawan-mushi (masakan campur aduk yang dipanaskan dengan uap) atau telur-tahu dengan menguapkan telurnya, Anda harus mengocoknya dengan baik untuk membuat cairan telur yang homogen; namun, jauh lebih baik untuk tidak membuat busa dari cairan telur tersebut.

Sekarang, biar saya jelaskan mengapa lebih baik tidak mengocok berlebihan ketika hendak menggoreng telur. Telur memiliki bagian putih dan kuningnya dan tiap bagian memiliki teksturnya masing-masing (putih telur memiliki penampilan seperti jeli dan kuning telur memiliki tekstur yang seperti krim atau berlemak). Ketika telur dikocok dengan baik dan menjadi cairan yang nyaris homogen, tekstur yang lezat dari putih telur dan kuning telur akan hilang dan menjadi membosankan. Karenanya, untuk menikmati keselarasan tekstur kedua bagian, sebaiknya tidak dikocok berlebihan.

Khususnya, bila Anda hendak membuat masakan seperti Oyako-don (semangkok nasi bertopping ayam dan telur), sangat penting agar Anda tidak mengocok telur berlebihan, bila tidak menginginkan rasa dan penampilannya berubah. Terdapat beberapa telur yang sudah dikocok di pasaran: “Telur cair” ini, yang telah berada di pasar untuk beberapa waktu, adalah cairan homogen yang telah disaring dan disterilkan. Bahkan, terdapat produk baru yang disebut “telur cair kemasan ganda” yang mana putih telur dan kuning telur dipisahkan untuk digunakan pada masakan tertentu seperti Oyako-don dan Katsu-don.

Berikut adalah tiga sifat utama telur:

Penggumpalan (Koagulasi)

Telur terkoagulasi atau menggumpal ketika dipanaskan. Beberapa contoh dari sifat ini adalah telur goreng dan telur rebus.

Pembentukan busa (foaming)

Ketika putih telur dikocok selama beberapa menit, maka akan timbul banyak busa berupa gelembung udara kecil. Beberapa contoh dari sifat ini adalah kue sponge.

Emulsifikasi

Ini merupakan prosedur utama untuk menyiapkan produk berlemak seperti mayonaise dan es krim. Emulsifikasi adalah campuran dua cairan yang semula tidak campur, dengan membiarkan salah satunya mendispersi ke dalam cairan lain sebagai partikel kecil. Cairan yang teremulsi ini disebut emulsi. Semakin kecil ukuran partikel yang bercampur, semakin mudah zat tersebut untuk teremulsi dengan cairan lain.

Khususnya, kuning telur yang teremulsifikasi dengan baik, dapat mengemulsi empat kali lebih mudah daripada putih telur. Bentuk susu, margarin dan salad adalah contoh emulsi lainnya.

Kamis, 05 Agustus 2010

Kimia Material . Busa baru mengurangi resiko kebakaran

Memperlakukan perlengkapan rumah tangga dengan halus melalui toksin yang memperlambat api dapat dihindari di masa mendatang dan terima kasih kepada polymer baru yang tidak dapat terbakar dimana dikembangkan oleh para ilmuwan Amerika Serikat.

Polyurethanes digunakan secara luas pada berbagai produk umum, diantaranya kain pelapis dan matras, dalam bentuk busa yang fleksibel. Meskipun begitu, mereka secara alamiah dapatlah terbakar dan bahan memperlambat api haruslah ditambahkan untuk memenuhi peraturan keselamatan, namun hal tersebut dapat memberikan kerugian selanjutnya.

‘Beberapa aditif yang memperlambat api, khususnya contoh terhaloginasi, telah menunjukkan sifat toksin dan bio-accumulative,’ jelas kepala penelitian yaitu Todd Emrick dari University of Massachusetts, Amherst. Mereka juga dapat mempengaruhi property fisik polyurethane dengan kurang baik, tambahnya.

Polymer berbasis deoxybenzoin telah diketahui mempunyai tingkat pelepasan panas yang rendah dan formasi arang sangat tinggi – dua kunci pengukuran terhadap bahan yang rendah tingkat kebakarannya, kata Emrick. Pengaranggan mengisolasi polymer interface udara dan mengurangi konduksi panas. Emrick mensintesisikan dua deoxybenzoin yang berisi monomers baru dan menyelidiki bahan kimiawi polymerisasi mereka dengan diols berbeda, yang menghasilkan polyurethanes yang lebih menolak api dari pada yang konvensional tanpa perlu aditif yang membahayakan lingkungan.

‘Pendekatan yang mereka lakukan adalah untuk mengembangkan beberapa bahan arang tinggi dan mereka berhasil melakukannya,’ komentar Charles Wilkie seorang ahli pada retardansi api dan degradasi polymer pada Marquette University, Milwaukee, Amerika Serikat.

Emrick mengatakan dia berharap untuk menskalakan sintesis untuk digunakan dalam dunia industri.

Rabu, 04 Agustus 2010

Kesetimbangan Dinamis dan Reaksi Reversibel

Umumnya reaksi yang ada di alam merupakan reaksi-reaksi bolak-balik, hanya sebagian kecil saja yang merupakan reaksi dalam satu arah atau reaksi berkesudahan.

Pada awal proses reaksi reversible, reaksi berlangsung ke arah pembentukan produk, setelah terbentuknya molekul produk, maka molekul tersebut mulai bereaksi kearah sebaliknya (arah penguraian). Pada saat yang sama tetap terjadi treaksi pembentukan, dan pada suatu saat jumlah zat-zat yang berekasi dan hasil reaksi tetap, kondisi dikatakan sebagai keadaan kesetimbangan. Pada saat kesetimbangan, reaksi tidak berhenti, reaksi tetap berjalan baik ke arah pembentukan maupun ke arah penguraian.

Namun baik zat-zat yang bereaksi maupun hasil reaksinya tetap konstan, keadaan kesetimbangan semacam ini yang dikatakan sebagai kesetimbangan dinamis.

Pada saat kesetimbangan jumlah zat yang bereaksi maupun hasil reaksi tetap. Untuk memahami kondisi ini perhatikan Gambar 9.4. Pada awalnya produk belum terbentuk, ketika zat yang bereaksi mulai berkurang konsentrasinya, bersamaan dengan itu pula produk mulai terbentuk. Demikian seterusnya zat yang bereaksi terus berkuran dan produk, sampai dengan satu saat, dimana konsentrasi zat yang bereaksi maupun produk sudah tidak berubah atau tetap, maka saat tersebut telah berada dalam kesetimbangan.

gambar 9.4

Gambar 9.4. Penurunan dan peningkatan konsentrasi dari zat yang berekasi dan hasil reaksi pada saat menuju kesetimbangan

Penjelesan diatas belum menjelaskan bahwa pada saat kesetimbangan reaksi tetap berjalan. Untuk hal tersebut, kita dapat mencermati grafik, pada Gambar 9.5.

gambar 9.5

Gambar 9.5. Proses pencapaian keadaan kesetimbangan ditinjau dari kecepatan reaksi

Dari Gambar 9.5. tampak bahwa kecepatan reaksi pembentukan (kekanan) v1 dan kecepatan reaksi penguraian (ke kiri) v2. Kecepatan reaksi v1 sangat tergantung pada jumlah zat yang bereaksi dan kecepatan reaksi v2 bergantung pada konsentrasi produk.

Pada awal reaksi, v1 mempunyai nilai maksimum, sedangkan v2 = 0 (karena produk belum ada). Dengan berkurangnya konsentrasi zat yang bereaksi maka v1 juga semakin kecil. Sebaliknya dengan bertambahnya konsentrasi produk maka kecepatan v2 semakin membesar.

Pada saat tertentu, kecepatan reaksi pembentukan (v1) menjadi sama dengan kecepatan reaksi penguraian (v2). Dalam kondisi v1 = v2, jumlah masing masing zat tidak berubah terhadap waktu oleh karena itu tidak ada perubahan yang dapat diamati terhadap waktu atau kecepatan reaksi tetap dan keadaan ini tercapai ketika reaksi mencapai kesetimbangan.

Selasa, 03 Agustus 2010

Pembangkit Listrik Tenaga Bakteri

Spesies tertentu Desulfitobacteria tak hanya membersihkan limbah tapi juga menghasilkan listrik.

Para ilmuwan telah lama mempelajari bakteri yang dapat membersihkan limbah beracun. Salah satunya bakteri yang menjadikan limbah sebagai makanannya. Jenis bakteri tertentu ternyata tidak hanya memakan limbah, tapi juga menghasilkan listrik. Saat ini telah ditemukan bakteri yang makan racun 24 jam selama seminggu sekaligus menghasilkan listrik. Penemuan ini telah dipresentasikan pada Pertemuan Umum ke 105 American Society for Microbiology.

“Bakteri tersebut mampu menghasilkan listrik secara terus-menerus dan pada tingkat tertentu dapat digunakan untuk menjalankan peralatan listrik berdaya rendah,” kata Charles Milliken dari Universitas Kedokteran Carolina Selatan. Penelitian ini dilakukan bersama koleganya Harold May.

Penelitian baru terhadap Desulfitobacteria berhasil mengungkap kemampuannya untuk menghancurkan dan mengatasi polutan yang paling bermasalah antara lain PCB (Polychlorinated biphenyl) dan beberapa larutan kimia.

“Bakteri ini memiliki kemampuan metabolisme yang sangat berbeda dengan yang lain, misalnya makanan yang dapat dikonsumsi,” ungkap Millikan. Artinya, bakteri tersebut dapat mengubah berbagai jenis limbah dalam jumlah besar sebagai sumber listrik. Menurutnya, teknologi ini dapat digunakan untuk membantu reklamasi pengairan yang tercemar dengan membersihkan limbah sekaligus menghasilkan listrik.

050509_ecoli_bacteria_01.jpegBakteri menjalankan fungsi yang berguna saat berada pada kondisi spora, tahap perkembangan yang tahan terhadap panas ekstrim, radiasi, dan minimnya air. Sifat-sifat yang dimiliki organisme ini, sangat cocok untuk dipekerjakan pada lingkungan yang mustahil dilakukan oleh manusia.

Bukan mustahil, suatu saat akan diciptakan pembangkit listrik tenaga bakteri yang selain merupakan sumber energi terbarukan juga menjadi solusi bagi kesehatan lingkungan karena mampu menguraikan berbagai limbah berbahaya.

PEMANFAATAN PEMBANGKIT LISTRIK TENAGA MIKROHIDRO UNTUK DAERAH TERPENCIL

Negara Indonesia adalah Negara kepulauan yang masih banyak daerah-daerah yang masih terpencil dan belum ada penerangan listrik dan terjangkau oleh PLN. Padahal listrik atau penerangan sangat dibutuhkan oleh daerah tersebut agar daerah tersebut tidak ketinggalan dalam memperoleh informasi yang bertujuan untuk memajukan daerah tersebut dan dapat meningkatan pruduktifitas masyarakatnya. Oleh karena itu uintuk memenuhi kebutuhan akan penerangan listrik untuk daerah terpencil perlu diciptakan alat yang dapat menjangkau tempat terpencil yang murah dan ramah lingkungan, yaitu Pembangkit Listri Tenaga Mikrohidro.

Pemasangan pembangkit listrik tenaga air atau Pembangkit Listrik Tenaga Mikrohidro (PLTMH) khususnya didaerah terpencil masih perlu dikembangkan melihat daerah di Indonesia yang banyak sekali gunung dan air terjun yang belum dimafaatkan secara optimal, dan masih banyak pula daerah terpencil di Indonesia yang belum terjangkau oleh aliran listrik (PLN) terutama untuk pos-pos TNI di daerah terpencil dan perbatasan.Sebagai alternatif pembangkit listrik dengan menggunakan diesel (PLTD) yang menggunakan bahan bakar minyak khususnya solar yang biaya operationalnya lebih besar dibanding PLTMH, disamping itu PLTMH juga ramah lingkungan.

Bertitik tolak dari keadaan tersebut maka perlunya diadakan penelitian dan pengembangan tentang pemasangan pembangkit listrik tenaga mikrohidro yang tentunya dengan bahan bakunya yang mudah didapat yaitu air, seperti saluran irigasi, sungai kecil yang ada didataran rendah, atau kepulauan yang tidak memiliki bukit-bukit tetapi air yang melimpah. Dalam hal ini PLTMH dengan menggunakan sistem cetak miring adalah dimana air tidak tertahan pada sebuah bendungan. Pada sistem cetak miring, sebagian air sungai diarahkan ke saluran pembawa kemudian dialirkan melalui pipa pesat (penstock) menuju turbin. Selepas dari turbin, air dikembalikan lagi kealiran semula, sehingga hal ini tidak banyak mempengaruhi lingkungan atau mengurangi air yang keperluan pertanian. Air akan dialirkan kedalam turbin melalui sudu-sudu runner yang akan memutarkan poros turbin. Putaran inilah yang akan memutarkan generator untuk menghasilkan energi listrik.

Belajar dari Negara Maju

Di negara laju seperti negara Belanda sumber daya alam telah lama di gunakan dengan mengunakan media angin yaitu kincir angin yang menggerakkan turbin sehingga akan menghasilkan listrik, maka tempat-tempat terpencil di sana sudah tidak lagi mengandalkan diesel atau alat lain yang menggunakan bahan bakar minyak sebagai sumber pembangkitnya. Selain di negara maju di negara vietnam telah mencoba sistem Pembangkit listrik Tenaga Mikrohidro untuk memenuhi kebutuhan listrik di daerah-daerah terpencil di negara itu. Vietnam merupakan negara yang berhasil mengembangkan turbin ukuran kecil yang dapat digunakan oleh penduduk dengan keterampilan yang minimal hingga berjumlah ribuan tersebar di pelosok desa. Di negara kita juga telah mencoba teknologi ini di daerah Jawa barat dan di daerah Sulawesi khususnya daerah yang banyak air terjun sebagai sumber tenaganya oleh karena itu teknologi ini perlu diterapkan juga pada satuan-satuan TNI didaerah terpencil dan daerah perbatasan yang jauh dari jangkauan aliran listrik sehingga dapat melepas ketergantungan terhadap bahan bakar minyak atau bahan tambang lainnya yang dapat sewaktu-waktu habis digunakan. Masih banyak lagi sumber daya alam yang lain yang belum dikembangkan dan dimanfaatkan secara optimal.

Pembangkit Listrik Tenaga Mikrohidro (PLTM) di Jaringan Irigasi

Tujuan dari penerapan pembangkit listrik tenaga mikrohidro di jaringan irigasi adalah untuk menunjang pembangunan pedesaan melalui peningkatan taraf sosial-ekonomi masyarakat desa. Jaringan irigasi yang banyak dibangun di daerah pedesaan untuk menunjang pembangunan pertanian menyimpan potensi tenaga air yang cukup besar untuk dimanfaatkan bagi PLTM.

Penerapan pembangkit listrik tenaga mikrohidro di jaringan irigasi adalah untuk mengembangkan potensi tenaga air yang terdapat pada jaringan irigasi menjadi potensi tenaga listrik, dengan membuat pembangkit listrik tenaga mikrohidro pada bagian-bagian dari jaringan irigasi yang mempunyai potensi, dan menyalurkan tenaga listrik yang dihasilkan kepada masyarakat pemakai untuk dimanfaatkan bagi pengembangan potensi sosial-ekonomi desa (pendidikan, kesehatan, keluarga berencana, keagamaan, pertanian, peternakan, industri kecil/rumah, kerajinan, ketrampilan, perdagangan dan lain-lain).

PERSYARATAN TEKNIS

1. Sistem pengelolaan jaringan irigasi cukup baik, sehingga pendistribusian air berlangsung secara teratur sepanjang tahun.

2. Debit air yang diperlukan tersedia sepanjang tahun dan dapat dipenuhi oleh debit sungai rata-rata pada musim kemarau.

3. Tinggi terjun yang cukup, yang bersama-sama dengan debit aliran menghasilkan potensi tenaga air yang dinyatakan dengan

daya sumber :

Ps = r gQH

dimana :

Ps = daya sumber (W)

r = kerapatan massa air (kg/m3)

g = percepatan gravitasi (m/dt2)

Q = debit aliran (m3/dt)

H = tinggi terjun (m)

Potensi listrik tenaga mikrohidro dinyatakan dengan daya hasil :

Ph = ht Ps

dimana :

Ph = daya hasil (W)

ht = effisiensi total PLTM (%)

4. Pembuatan PLTM tidak mengganggu sistem irigasi yang sudah ada, bahkan agar diusahakan adanya peningkatan/perbaikan.

5 PLTM menggunakan teknologi tepat guna agar pembuatan, pengoperasian dan pemeliharaannya dapat dilakukan dengan menggunakan tenaga kerja setempat.

PERSYARATAN SOSIO-EKONOMIS

1. Potensi listrik tenaga mikrohidro yang ada merupakan sumber daya yang dapat menunjang pembangunan pedesaan. Potensi sosial-ekonomi desa yang dapat dikembangkan dengan adanya PLTM cukup besar.

2. Biaya pembuatan PLTM dapat ditanggulangi oleh usaha swadaya masyarakat, koperasi atau unit usaha swasta kecil dan menengah lainnya.

3. Usaha kelistrikan dari PLTM secara ekonomi dapat dipertanggung jawabkan, dalam arti potensi konsumen yang ada dapat menyerap produksi listrik yang dihasilkan dengan harga jual yang ditetapkan berdasarkan prinsip-prinsip pengusahaan.

Potensi sumber daya manusia yang ada dapat diharapkan untuk mengelola PLTM secara baik dan handal.

PENGKAJIAN PENERAPAN PLTM DI JARINGAN IRIGASI

Pengkajian aspek teknologi

1. Evaluasi teknis potensi listrik tenaga mikrohidro di daerah irigasi.

2. Penelitian laboratorium dengan model PLTM.

3. Perencanaan dan pelakssanaan konstruksi prototipe PLTM di jaringan irigasi.

4. Uji coba kapasitas prototipe PLTM.

5. Uji coba kapasitas jaringan transmisi dan distribusi dari prototipe PLTM.

6. Uji coba pengoperasian prototipe PLTM.

7. Evaluasi teknis pengoperasian prototipe PLTM.

KESIMPULAN

Banyak sumber daya alam yang ada di negara kita belum dimanfaat secara optimal tidak seperti di negara maju yang sudah memanfaatkan sumber daya alamnya dengan baik seperti pembangkit listrik tenaga air padahal letak negara kita yang banyak sekali pegunungan yang tentunya banyak sekali air terjun yang melimpah, dan banyak daerah yang letaknya di dataran tinggi belum dijangkau aliaran listrik, dengan pembangkit listrk tenaga mikro hidro daerah tersebut akan mendapatkan aliran listrik yang tentunya dengan perawatan yang relatif mudah dan murah.

DAFTAR PUSTAKA

Sumber di ambil dari Brosur CV. Cihanjuang Inti Tehnik – Cimahi jawa barat

Senin, 02 Agustus 2010

Karakteristik Relai Jarak (Distance Relay), Pola Proteksi dan penyetelan Relai Jarak

Untuk cara kerja dan fungsi relai jarak telah dibahas pada artikel sebelumnya di sini. Dan artikel kali ini akan membahas mengenai karakteristik dari relai jarak atau distance relay tersebut. Karakteristik relai jarak merupakan penerapan langsung dari prinsip dasar relai jarak, karakteristik ini biasa digambarkan didalam diagram R-X.

Adapun karakteristik relai jarak dibedakan menjadi:
> Karakteristik impedansi
> Karakteristik Mho
> Karakteristik Reaktance
> Karakteristik Quadrilateral


Diagram R-X

Karakteristik Impedansi

Ciri-ciri nya :
- Merupakan lingkaran dengan titik pusatnya ditengah-tengah, sehingga mempunyai sifat non directional. Untuk diaplikasikan sebagai pengaman SUTT perlu ditambahkan relai directional.
- Mempunyai keterbatasan mengantisipasi gangguan tanah high resistance.
- Karakteristik impedan sensitive oleh perubahan beban, terutama untuk SUTT yang panjang sehingga jangkauan lingkaran impedansi dekat dengan daerah beban.

Gambar 1. Karakteristik Impedansi

Karakteristik Mho

Ciri-ciri :
- Titik pusatnya bergeser sehingga mempunyai sifat directional.
- Mempunyai keterbatasan untuk mengantisipasi gangguan tanah high resistance.
- Untuk SUTT yang panjang dipilih Zone-3 dengan karakteristik Mho lensa geser.

Gambar 2a. Karakteristik Mho


Gambar 2b. Karakteristik Mho Z1,Z2 parsial Cross-polarise Mho, Z3 Lensa geser.

Karakteristik Reaktance

Ciri-ciri :
- Karateristik reaktance mempunyai sifat non directional.
- Untuk aplikasi di SUTT perlu ditambah relai directional.
- Dengan seting jangkauan resistif cukup besar maka relai reactance dapat mengantisipasi gangguan tanah dengan tahanan tinggi.

Gambar 3. Karakteristik Reaktance dengan Starting Mho.

Karakteristik Quadrilateral

Ciri-ciri :
- Karateristik quadrilateral merupakan kombinasi dari 3 macam komponen yaitu: reactance, berarah dan resistif.
- Dengan seting jangkauan resistif cukup besar maka karakteristik relai quadrilateral dapat mengantisipasi gangguan tanah dengan tahanan tinggi.
- Umumnya kecepatan relai lebih lambat dari jenis mho.

Gambar 4. Karakteristik Quadrilateral

Pola Proteksi

Agar gangguan sepanjang SUTT dapat di-trip-kan dengan seketika pada kedua sisi ujung saluran, maka relai jarak perlu dilengkapi fasilitas teleproteksi. Pola-pola proteksi tersebut adalah:

1. Pola Dasar
Ciri-ciri Pola dasar :
- Tidak ada fasilitas sinyal PLC
- Untuk lokasi gangguan antara 80 – 100 % relai akan bekerja zone-2 yang waktunya lebih lambat (tertunda).


2. Pola PUTT (Permissive Underreach Transfer Trip)
Prinsip Kerja dari pola PUTT :
- Pengiriman sinyal trip (carrier send) oleh relai jarak zone-1.
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan menerima sinyal. (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak kembali ke pola dasar.
- Dapat menggunakan berbeda type dan relai jarak.


3. Permissive Overreach transfer Trip
Prinsip Kerja dari pola POTT :
- Pengiriman sinyal trip (carrier send) oleh relai jarak zone-2.
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan nmenerima sinyal (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak kembali ke pola dasar.
- Dapat menggunakan berbeda type dan relai jarak.


4. Pola Blocking (Blocking Scheme)
Prinsip Kerja dari pola Blocking :
- Pengiriman sinyal block (carrier send) oleh relai jarak zone-3 reverse
- Trip seketika oleh teleproteksi akan terjadi bila relai jarak zone-2 bekerja disertai dengan tidak ada penerimaan sinyal block. (carrier receipt).
- Bila terjadi kegagalan sinyal PLC maka relai jarak akan mengalami mala kerja.
- Membutuhkan sinyal PLC cukup half duplex.
- Relai jarak yang dibutuhkan merk dan typenya sejenis.


Penyetelan Daerah Jangkauan pada Relai Jarak

Relai jarak pada dasarnya bekerja mengukur impedansi saluran, apabila impedansi yang terukur / dirasakan relai lebih kecil impedansi tertentu akibat gangguan (Zset < style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; ">


Penyetelan relai jarak terdiri dari tiga daerah pengamanan, Penyetelan zone-1 dengan waktu kerja relai t1, zone-2 dengan waktu kerja relai t2, dan zone-3 waktu kerja relai t3.

1. Penyetelan Zone-1
Dengan mempertimbangkan adanya kesalahan-kesalahan dari data saluran, CT, PT, dan peralatan penunjang lain sebesar 10% - 20 %, zone-1 relai disetel 80 % dari panjang saluran yang diamankan.
Zone-1 = 0,8 . Z L1 (Saluran)
Waktu kerja relai seketika, (t1= 0) tidak dilakukan penyetelan waktu .

2. Penyetelan Zone-2
Prinsip peyetelan Zone-2 adalah berdasarkan pertimbanganpertimbangan sebagai berikut:
Zone-2 min = 1,2 . ZL1
Zone-2 mak = 0,8 (Z L1 + 0,8. ZL2)
Dengan : ZL1 = Impedansi saluran yang diamankan.
ZL1 = Impedansi saluran berikutnya yang terpendek (Ω)
Waktu kerja relai t2= 0.4 s/d 0.8 dt.

3. Penyetelan zone-3
Prinsip penyetelan zone-3 adalah berdasarkan pertimbanganpertimbangan sebagai berikut:
Zone-3min = 1.2 ( ZL1 + 0,8.ZL2 )
Zone-3mak1 = 0,8 ( ZL1 + 1,2.ZL2 )
Zone-3mak2 = 0,8 ( ZL1 + k.ZTR )
Dengan : L1 = Impedansi saluran yang diamankan
ZL2 = Impedansi saluran berikutnya yang terpanjang
Waktu kerja relai t3= 1.2 s/d 1.6 dt.

4. Peyetelan zone-3 reverse
Fungsi penyetelan zone-3 reverse adalah digunakan pada saat pemilihan teleproteksi pola blocking. Dasar peyetelan zone-3 reverse ada dua jenis :
- Bila Z3 rev memberi sinyal trip.
Zone-3 rev = 1.5 Z2-ZL1
- Bila Z3 rev tidak memberi sinyal trip.
Zone-3 rev = 2 Z2-ZL1.

5. Penyetelan Starting
Fungsi starting relai jarak adalah:
1. Mendeteksi adanya gangguan.
2. Menentukan jenis gangguan dan memilih fasa yang terganggu.

Prinsip penyetelan starting di bagi 2, yaitu :
1. Starting arus lebih :
I fasa-fasa = 1.2 CCC atau ct
I fasa-netral = 0.1. CCC atau ct

2. Starting impedansi
Zsmin = 1.25 x Zone-3
Zs max= 0.5 x kV/(CCC atau Ct x√3)

6. Penyetelan Resistif reach
Fungsi penyetelan resistif reach adalah mengamankan gangguan yang bersifat high resistance. Prinsip penyetelan resistif reach (Rb) tidak melebihi dari kreteria setengah beban (1/2 Z beban ).
- Untuk system 70 kV:
Rb = 15 x Zone-1 x k0 x 2.
- Untuk system 150 dan 500 kV:
Rb = 8 x Zone-1 x k0 x 2

Kode IP (International Protection / Ingress Protection)

Kode IP (International Protection), ada juga yang mengartikan sebagai “Ingress Protection” terdiri dari huruf IP yang kemudian diikuti oleh dua angka dan terkadang diikuti juga oleh sebuah atau dua huruf tambahan. Sebagaimana didefinisikan dalam standar internasional IEC 60529, dimana IP rating tersebut mengklasifikasikan derajat atau tingkat perlindungan yang diberikan dari suatu peralatan listrik, contohnya motor listrik seperti telah dijelaskan pada artikel sebelumnya disini.

Perlindungan tersebut merupakan perlindungan terhadap gangguan:
• Benda padat (termasuk bagian tubuh manusia seperti tangan dan jari).
• Debu.
• Hubungan/kontak langsung.
• Air.

Dua digit angka setelah huruf IP menunjukkan kondisi yang sesuai dari peralatan tersebut berdasarkan klasifikasinya. Dan jika tidak ada rating perlindungan sehubungan dengan salah satu kriteria, maka angka diganti dengan huruf X, contoh IP4X atau IPX6.

Kode Tingkat Perlindungan




Kode Utama

Digit Pertama, menunjukkan tingkat perlindungan peralatan terhadap benda padat termasuk perlindungan terhadap akses ke bagian berbahaya (misalnya, konduktor listrik dan bagian-bagian yang bergerak)

0. Tidak ada perlindungan terhadap kontak dan masuknya objek.

1. Perlindungan dari benda dengan ukuran >50 mm, seperti tangan, tapi tidak ada perlindungan terhadap kontak langsung yang disengaja dengan bagian tubuh (contoh tanpa sengaja tersentuh oleh tangan).

2. Perlindungan dari benda dengan ukuran >12,5 mm, seperti jari atau benda semacam itu.

3. Perlindungan dari benda dengan ukuran >2,5 mm, seperti alat-alat, kabel tebal, dll

4. Perlindungan dari benda dengan ukuran >1 mm, seperti sekrup, baut, kabel, dll

5. Perlindungan dari masuknya debu dan perlindungan lengkap terhadap kontak langsung. Pada tingkatan ini debu masih dapat dijinkan masuk namun dalam batas normal selama tidak mengganggu pengoperasian peralatan.

6. Perlindungan secara ketat dari masuknya debu dan perlindungan lengkap terhadap kontak langsung.

Digit kedua, menunjukkan tingkat perlindungan peralatan terhadap masuknya air.

0. Tidak dilindungi.

1. Perlindungan terhadap tetesan air yang jatuh langsung secara vertikal.

2. Perlindungan terhadap tetesan air yang jatuh langsung dengan kemiringan 15°.

3. Perlindungan terhadap percikan air yang jatuh dengan kemiringan 60°.

4. Perlindungan terhadap percikan air yang datang dari segala arah.

5. Perlindungan terhadap semprotan air yang datang dari segala arah, contohnya semprotan air dari pipa air atau keran.

6. Perlindungan terhadap semprotan air bertekanan yang datang dari segala arah, contohnya semprotan air dari water jet.

7. Perlindungan akibat perendaman dalam air pada kedalaman air antara 15 cm sampai dengan 1 m.

8. Perlindungan akibat perendaman dalam air yang bertekanan dan dilakukan dalam jangka waktu tertentu ataupun terus-menerus. Biasanya, ini berarti bahwa alat ini tertutup rapat. Namun, pada beberapa jenis peralatan, itu dapat berarti bahwa air bisa masuk tetapi hanya dalam sedemikian rupa sehingga tidak menimbulkan efek yang berbahaya.

Kode Tambahan

Digit ketiga, merupakan kode tambahan pertama berupa notasi huruf yang menunjukkan perlindungan bagian-bagian berbahaya dari akses manusia.

• A - Tangan

• B - Jari

• C - alat-alat

• D - kabel

Digit keempat, merupakan kode tambahan kedua juga berupa notasi huruf ntuk memberikan informasi tambahan kepada pengguna yang terkait dengan perlindungan peralatan tersebut.

• H - perangkat tegangan tinggi.

• M - perangkat bergerak (selama uji air).

• S - perangkat diam (selama uji air).

• W- kondisi cuaca

Kode IK

Kode IK, merupakan kode nomor tambahan yang digunakan untuk menentukan ketahanan peralatan untuk dampak mekanis. Dampak mekanis ini diidentifikasi dengan energi yang diperlukan untuk memenuhi syarat tingkat ketahanan yang ditentukan, yang diukur dalam joule (J), didasarkan pada EN 50102 - VDE 0470 Part 100 dan EN 62262 dan telah menggantikan standar kode IP untuk ketahanan peralatan yang dinotasikan dengan angka 0 s/d 9.

Kode IP untuk menentukan tingkat ketahanan (termasuk kategori kode lama)
• 0 - Tanpa perlindungan

• 1 – Perlindungan sampai dengan 0,225 J, setara dengan benda seberat 150 gr yang dijatuhkan dari ketinggian 15 cm.

• 2 - Perlindungan sampai dengan 0,375 J, setara dengan benda seberat 250 gr yang dijatuhkan dari ketinggian 15 cm.

• 3 - Perlindungan sampai dengan 0, 5 J, setara dengan benda seberat 250 gr yang dijatuhkan dari ketinggian 20 cm.

• 5 - Perlindungan sampai dengan 2 J, setara dengan benda seberat 500 gr yang dijatuhkan dari ketinggian 40 cm.

• 7 - Perlindungan sampai dengan 6 J, setara dengan benda seberat 1,5 kg yang dijatuhkan dari ketinggian 40 cm.

• 9 - Perlindungan sampai dengan 20 J, setara dengan benda seberat 5 kg yang dijatuhkan dari ketinggian 40 cm.

Kode IK

• 00 - Tanpa Perlindungan

• 01 - Perlindungan sampai dengan 0,150 J, setara dengan benda seberat 200 gr yang dijatuhkan dari ketinggian 7,5 cm.

• 02 - Perlindungan sampai dengan 0,200 J, setara dengan benda seberat 200 gr yang dijatuhkan dari ketinggian 10 cm.

• 03 - Perlindungan sampai dengan 0,350 J, setara dengan benda seberat 200 gr yang dijatuhkan dari ketinggian 17,5 cm.

• 04 - Perlindungan sampai dengan 0,500 J, setara dengan benda seberat 200 gr yang dijatuhkan dari ketinggian 25 cm.

• 05 - Perlindungan sampai dengan 0,700 J, setara dengan benda seberat 200 gr yang dijatuhkan dari ketinggian 35 cm.

• 06 - Perlindungan sampai dengan 1 J, setara dengan benda seberat 500 gr yang dijatuhkan dari ketinggian 20 cm.

• 07 - Perlindungan sampai dengan 2 J, setara dengan benda seberat 500 gr yang dijatuhkan dari ketinggian 40 cm.

• 08 - Perlindungan sampai dengan 5 J, setara dengan benda seberat 1,7 kg yang dijatuhkan dari ketinggian 29,5 cm.

• 09 - Perlindungan sampai dengan 10 J, setara dengan benda seberat 5 kg yang dijatuhkan dari ketinggian 20 cm.

• 10 - Perlindungan sampai dengan 20 J, setara dengan benda seberat 5 kg yang dijatuhkan dari ketinggian 40 cm.

Semoga bermanfaat, http://dunia-listrik.blogspot.com

Tabel Kode IP dan IK




Kode Tingkat Pengaman Motor Listrik

Pada peralatan listrik umumnya terdapat “name plate” atau sebuah plat yang terdapat penjelasan mengenai karakteristik dari peralatan tersebut, seperti tegangan kerja, arus, frekuensi, tingkat isolasi dan lainnya, juga tertera simbol atau logo yang berhubungan dengantindakan pengamanan, lihat gambar-1.

Simbol pada peralatan listrik tersebut dibagi menjadi 3 tingkatan/klas, yaitu:

• Klas I memberikan keterangan bahwa badan alat harus dihubungkan dengan pentanahan.
• Klas II menunjukkan alat dirancang dengan isolasi ganda dan aman dari tegangan sentuh.
• Klas III peralatan listrik yang menggunakan tegangan rendah yang aman, contoh mainan anak-anak.

Motor listrik bahkan dirancang oleh pabriknya dengan kemampuan tahan terhadap siraman langsung air, lihat gambar-2. Motor listrik jenis ini tepat digunakan di luar bangunan tanpa alat pelindung dan tetap bekerja normal dan tidak berpengaruh pada kinerjanya. Name plate motor dengan IP 54, yang menyatakan proteksi atas masuknya debu dan tahan masuknya air dari arah vertikal maupun horizontal.Ada motor listrik dengan proteksi ketahanan masuknya air dari arah vertikal saja gambar-3a, sehingga cairan arah dari samping tidak terlindungi. Tapi juga ada yang memiliki proteksi secara menyeluruh dari segala arah cairan gambar-3b. Perbedaan rancangan ini harus diketahui oleh teknisi karena berpengaruh pada ketahanan dan umur teknik motor, disamping harganya juga berbeda.

Simbol Indek Proteksi Alat Listrik





Kode IP (International Protection) peralatan listrik menunjukkan tingkat proteksi yang diberikan oleh selungkup dari sentuhan langsung ke bagian yang berbahaya, dari masuknya benda asing padat dan masuknya air. Contoh IP X1 artinya angka X menyatakan tidak persyaratan proteksi dari masuknya benda asing padat. Angka 1 menyatakan proteksi tetesan air vertikal. Contoh IP 5X, angka 5 proteksi masuknya debu, angka X tidak ada proteksi masuknya air dengan efek merusak. Tabel-1 merupakan contoh simbol Indek proteksi alat listrik yang dinyatakan dengan gambar.

Dasar SCADA

Apa manfaat SCADA bagi kita??SCADA bukanlah teknologi khusus, tapi lebih merupakan sebuah aplikasi. Kepanjangan SCADA adalah Supervisory Control And Data Acquisition, semua aplikasi yang mendapatkan data-data suatu sistem di lapangan dengan tujuan untuk pengontrolan sistem merupakan sebuah Aplikasi SCADA!
Ada dua elemen dalam Aplikasi SCADA, yaitu:
1. Proses, sistem, mesin yang akan dipantau dan dikontrol - bisa berupa power plant, sistem pengairan, jaringan komputer, sistem lampu trafik lalu-lintas atau apa saja;
2. Sebuah jaringan peralatan ‘cerdas’ dengan antarmuka ke sistem melalui sensor dan luaran kontrol. Dengan jaringan ini, yang merupakan sistem SCADA, membolehkan Anda melakukan pemantauan dan pengontrolan komponen-
komponen sistem tersebut.

Anda dapat membangun sistem SCADA menggunakan berbagai macam teknologi maupun protokol yang berbeda-beda.

DIMANAKAH SCADA DIGUNAKAN?

Anda dapat menggunakan SCADA untuk mengatur berbagai macam peralatan. Biasanya, SCADA digunakan untuk melakukan proses industri yang kompleks secara otomatis, menggantikan tenaga manusia (bisa karena dianggap berbahaya atau tidak praktis - konsekuensi logis adalah PHK), dan biasanya merupakan proses-proses yang melibatkan faktor-faktor kontrol yang lebih banyak, faktor-faktor kontrol gerakan-cepat yang lebih banyak, dan lain sebagainya, dimana pengontrolan oleh manusia menjadi tidak nyaman lagi.
Sebagai contoh, SCADA digunakan di seluruh dunia misalnya untuk…
• Penghasil, transmisi dan distribusi listrik: SCADA digunakan untuk mendeteksi besarnya arus dan tegangan, pemantauan operasional circuit breaker, dan untuk mematikan/menghidupkan the power grid;
• Penampungan dan distribusi air: SCADA digunakan untuk pemantauan dan pengaturan laju aliran air, tinggi reservoir, tekanan pipa dan berbagai macam faktor lainnya;
• Bangunan, fasilitas dan lingkungan: Manajer fasilitas menggunakan SCADA untuk mengontrol HVAC, unit-unit pendingin, penerangan, dan sistem keamanan.
• Produksi: Sistem SCADA mengatur inventori komponen-komponen, mengatur otomasi alat atau robot, memantau proses dan kontrol kualitas.
• Transportasi KA listrik: menggunakan SCADA bisa dilakukan pemantauan dan pengontrolan distribusi listrik, otomasi sinyal trafik KA, melacak dan menemukan lokasi KA, mengontrol palang KA dan lain sebagainya.
• Lampu lalu-lintas: SCADA memantau lampu lalu-lintas, mengontrol laju trafik, dan mendeteksi sinyals-sinyal yang salah.

Dan, tentunya, masih banyak lagi aplikasi-aplikasi potensial untuk sistem SCADA. SCADA saat ini digunakan hampir di seluruh proyek-proyek industri dan infrastruktur umum.

Intinya SCADA dapat digunakan dalam aplikasi-aplikasi yang membutuhkan kemudahan dalam pemantauan sekaligus juga pengontrolan, dengan berbagai macam media antarmuka dan komunikasi yang tersedia saat ini (misalnya, Komputer, PDA, Touch Screen, TCP/IP, wireless dan lain sebagainya).

NGAPAIN JUGA PAKE SCADA?

Coba sekarang pikirkan tanggung-jawab atau tugas Anda di perusahaan, berkaitan dengan segala macam operasi dan parameter-parameter yang akhirnya mempengaruhi hasil produksi:
• Apakah peralatan Anda membutuhkan Catu Daya, suhu yang terkontrol, kelembaban lingkungan yang stabil dan tidak pernah mati?
• Apakah Anda perlu tahu - secara real time - status dari berbagai macam komponen dan peralatan dalam sebuah sistem kompleks yang besar?
• Apakah Anda perlu tahu bagaimana perubahan masukan mempengaruhi luaran?
• Peralatan apa saja yang perlu Anda kontrol - secara real time - dari jarak jauh?
• Apakah Anda perlu tahu dimanakah terjadinya kesalahan/kerusakan dalam sistem sehingga mempengaruhi proses?

PEMANTAUAN DAN PENGONTROLAN SECARA REAL-TIME MENINGKATKAN EFISIENSI DAN MEMAKSIMALKAN KEUNTUNGAN

Tanyakan beberapa poin tersebut sebelumnya, saya yakin Anda akan bisa memperkirakan dimanakah Anda bisa mengaplikasikan SCADA. Bisa jadi Anda akan berkata lagi “Terus ngapain? So What?”. Apa yang sebenarnya ingin Anda ketahui adalah hasil secara nyata yang bagaimanakah yang bisa Anda harapkan dengan mengaplikasikan SCADA?
Berikut ini beberapa hal yang bisa Anda lakukan dengan Sistem SCADA:
• Mengakses pengukuran kuantitatif dari proses-proses yang penting, secara langsung saat itu maupun sepanjang waktu.
• Mendeteksi dan memperbaiki kesalahan secara cepat.
• Mengukur dan memantau trend sepanjang waktu.
• Menemukan dan menghilangkan kemacetan (bottleneck) dan pemborosan (inefisiensi).
• Mengontrol proses-proses yang lebih besar dan kompleks dengan staf-staf terlatih yang lebih sedikit.

Intinya, sebuah sistem SCADA memberikan Anda keleluasaan mengatur maupuan mengkonfigurasi sistem. Anda bisa menempatkan sensor dan kontrol di setiap titik kritis di dalam proses yang Anda tangani (seiring dengan teknologi SCADA yang semakin baik, Anda bisa menempatkan lebih banyak sensor di banyak tempat). Semakin banyak hal yang bisa dipantau, semakin detil operasi yang bisa Anda lihat, dan semuanya bekerja secara real-time. Tidak peduli sekompleks apapun proses yang Anda tangani, Anda bisa melihat operasi proses dalam skala besar maupun kecil, dan Anda setidaknya bisa melakukan penelusuran jika terjadi kesalahan dan sekaligus meningkatkan efisiensi. Dengan SCADA, Anda bisa melakukan banyak hal, dengan ongkos lebih murah dan, tentunya, akan meningkatkan keuntungan!

Contoh Arsitektur SCADA

Bagaimana SCADA bekerja?

Sebuah sistem SCADA memiliki 4 (empat) fungsi , yaitu:
1. Akuisisi Data,
2. Komunikasi data jaringan,
3. Peyajian data, dan
4. Kontrol (proses)

Fungsi-fungsi tersebut didukung sepenuhnya melalui 4 (empat) komponen SCADA, yaitu:
1. Sensor (baik yang analog maupun digital) dan relai kontrol yang langsung berhubungan dengan berbagai macam aktuator pada sistem yang dikontrol;
2. RTUs (Remote Telemetry Units). Merupakan unit-unit “komputer” kecil (mini), maksudnya sebuah unit yang dilengkapi dengan sistem mandiri seperti sebuah komputer, yang ditempatkan pada lokasi dan tempat-tempat tertentu di lapangan. RTU bertindak sebagai pengumpul data lokal yang mendapatkan datanya dari sensor-sensor dan mengirimkan perintah langsung ke peralatan di lapangan;
3. Unit master SCADA (Master Terminal Unit - MTU). Kalo yang ini merupakan komputer yang digunakan sebagai pengolah pusat dari sistem SCADA. Unit master ini menyediakan HMI (Human Machine Iterface) bagi pengguna, dan secara otomatis mengatur sistem sesuai dengan masukan-masukan (dari sensor) yang diterima;
4. Jaringan komunikasi, merupakan medium yang menghubungkan unit master SCADA dengan RTU-RTU di lapangan.

SISTEM SCADA PALING SEDERHANA DI DUNIA!

Sistem SCADA yang paling sederhana yang mungkin bisa dijumpai di dunia adalah sebuah rangkaian tunggal yang memberitahu Anda sebuah kejadian (event). Bayangkan sebuah pabrik yang memproduksi pernak-pernik, setiap kali produk pernak-pernik berhasil dibuat, akan mengaktifkan sebuah saklar yang terhubungkan ke lampu atau alarm untuk memberitahukan bahwa ada satu pernak-pernik yang berhasil dibuat.
Tentunya, SCADA bisa melakukan lebih dari sekedar hal sederhana tersebut. Tetapi prinsipnya sama saja, Sebuah sistem SCADA skala-penuh mampu memantau dan (sekaligus) mengontrol proses yang jauh lebih besar dan kompleks.

AKUISISI DATA

Pada kenyataannya, Anda membutuhkan pemantauan yang jauh lebih banyak dan kompleks dari sekedar sebuah mesin yang menghasilkan sebuah produk (seperti contoh sebelumnya). Anda mungkin membutuhkan pemantauan terhadap ratusan hingga ribuan sensor yang tersebar di seluruh area pabrik. Beberapa sensor digunakan untuk pengukuran terhadap masukan (misalnya, laju air ke reservoir), dan beberapa sensor digunakan untuk pengukuran terhadap luaran (tekanan, massa jenis, densitas dan lain sebagainya).

Beberapa sensor bisa melakukan pengukuran kejadian secara sederhana yang bisa dideteksi menggunakan saklar ON/OFF, masukan seperti ini disebut sebagai masukan diskrit atau masukan digital. Misalnya untuk mengetahui apakah sebuah alat sudah bekerja (ON) atau belum (OFF), konveyornya sudah jalan (ON) atau belum (OFF), mesinnya sudah mengaduk (ON) atau belum (OFF), dan lain sebagainya. Beberapa sensor yang lain bisa melakukan pengukuran secara kompleks, dimana angka atau nilai tertentu itu sangat penting, masukan seperti ini disebut masukan analog, bisa digunakan untuk mendeteksi perubahan secara kontinu pada, misalnya, tegangan, arus, densitas cairan, suhu, dan lain sebagainya.

Untuk kebanyakan nilai-nilai analog, ada batasan tertentu yang didefinisikan sebelumnya, baik batas atas maupun batas bawah. Misalnya, Anda ingin mempertahankan suhu antara 30 dan 35 derajat Celcius, jika suhu ada di bawah atau diatas batasan tersebut, maka akan memicu alarm (baik lampu dan/atau bunyi-nya). Terdapat empat alarm batas untuk sensor analog: Major Under, Minor Under, Minor Over, dan Major Over Alarm.

KOMUNIKASI DATA

Dari contoh sederhana pabrik pernak-pernik, yang dimaksud ‘jaringan’ pada kasus tersebut adalah sekedar kabel yang menghubungkan saklar dengan panel lampu. Kenyataannya, seringkali Anda ingin memantau berbagai macam parameter yang berasal dari berbagai macam sensor di lapangan (pabrik), dengan demikian Anda membutuhkan sebuah jaringan komunikasi untuk melakukannya.
Pada awalnya, SCADA melakukan komunikasi data melalui radio, modem atau jalur kabel serial khusus. Saat ini data-data SCADA dapat disalurkan melalui jaringan Ethernet atau TCP/IP. Untuk alasan keamanan, jaringan komputer untuk SCADA adalah jaringan komputer lokal (LAN - Local Area Network) tanpa harus mengekspos data-data penting di Internet.

Komunikasi SCADA diatur melalui suatu protokol, jika jaman dahulu digunakan protokol khusus yang sesuai dengan produsen SCADA-nya, sekarang sudah ada beberapa standar protokol yang ditetapkan, sehingga tidak perlu khawatir masalah kecocokan komuninkasi lagi.

Karena kebanyakan sensor dan relai kontrol hanyalah peralatan listrik yang sederhana, alat-alat tersebut tidak bisa menghasilkan atau menerjemahkan protokol komunikasi. Dengan demikian dibutuhkan RTU yang menjembatani antara sensor dan jaringan SCADA. RTU mengubah masukan-masukan sensor ke format protokol yang bersangkutan dan mengirimkan ke master SCADA, selain itu RTU juga menerima perintah dalam format protokol dan memberikan sinyal listrik yang sesuai ke relai kontrol yang bersangkutan.

Gambar Contoh Jaringan pada Sistem SCADA

PENYAJIAN DATA

Untuk kasus pabrik pernak-pernik kita, satu-satunya tampilan adalah sebuah lampu yang akan menyala saat saklar diaktifkan. Ya, tentu saja kenyataannya bisa puluhan hingga ratusan lampu, bayangkan siapa yang akan Anda minta untuk mengawasi lampu-lampu tersebut, emangnya lampu hiasan? Bukan khan?
Sistem SCADA melakukan pelaporan status berbagai macam sensor (baik analog maupun digital) melalui sebuah komputer khusus yang sudah dibuatkan HMI-nya (Human Machine INterface) atau HCI-nya (Human Computer Interface). Akses ke kontrol panel ini bisa dilakukan secara lokal maupun melalui website. Bahkan saat ini sudah tersedia panel-panel kontrol yang TouchScreen. Perhatikan contoh-contoh gambar dan penjelasan pada STUDI KASUS.

Gambar Contoh akses SCADA melalui website KONTROL

Sayangnya, dalam contoh pabrik pernak-pernik kita tidak ada elemen kontrol. Baiklah, kita tambahkan sebuah kontrol. Misalnya, sekarang operator juga memiliki tombol pada panel kontrol. Saat dia klik pada tombol tersebut, maka saklar di pabrik juga akan ON.
Okey, jika kemudian Anda tambahkan semua kontrol pabrik ke dalam sistem SCADA melalui HMI-nya, maka Anda mendapatkan sebuah kontrol melalui komputer secara penuh, bahkan menggunakan SCADA yang canggih (hampir semua produk perangkat lunak SCADA saat ini sudah canggih-canggih) bisa dilakukan otomasi kontrol atau otomasi proses, tanpa melibatkan campur tangan manusia. Tentu saja, Anda masih bisa secara manual mengontrolnya dari stasion master.

Tentunya, dengan bantuan SCADA, proses bisa lebih efisien, efektif dan meningkatkan profit perusahaan.

Bagaimana mengevaluasi Sistem dan Perangkat Keras SCADA?

Okey, sekarang persoalannya adalah petunjuk bagaimana memilih dan memilah sistem SCADA yang baik. Apalagi sistem SCADA akan Anda gunakan hingga 10 sampai 15 tahun yang akan datang, tentunya Anda harus mencari produk-produk yang terkenal reputasinya. Namun hal ini akan berdampak pada investasi yang harus dilakukan, sebuah produk dengan reputasi handal dan terkenal tentu harganya jauh lebih mahal dibandingkan produk-produk SCADA baru yang saat ini mulai banyak bermunculan.
Ada beberapa hal penting yang perlu Anda perhatikan, antara lain:
• Anda bisa menghabiskan masa depan pabrik dengan ongkos berlebih yang tidak perlu;
• Kadangkala setelah menghabiskan dana yang sangat besar, akhirnya Anda hanya mendapatkan sebuah sistem yang kurang atau bahkan tidak memenuhi apa yang diinginkan;
• Atau barangkali saat ini sistem betul-betul memenuhi kebutuhan, tetapi tidak untuk pengembangan masa depan.

Catatan singkat mengenai Sensor dan Jaringan

Sensor dan relai kontrol merupakan komponen yang penting. Tentu saja, ada beberapa sensor yang lebih baik daripada lainnya, namun tersedianya datasheet untuk sebuah sensor akan membantu Anda mengenali lebih detil dari sensor yang bersangkutan, sehingga Anda bisa memilih mana yang terbaik.
Sebuah jaringan (LAN/WAN) berbasis TCP/IP merupakan jaringan yang mudah digunakan, dan jika pabrik Anda belum semuanya memiliki jaringan, transisi ke jaringan LAN bisa jadi merupakan tujuan jangka panjang perusahaan. Namun Anda tidak perlu langsung menerapkan jaringan LAN semuanya untuk mendapatkan keuntungan dari penggunaan SCADA. Sistem SCADA yang baik akan mendukung jaringan lama Anda dan jaringan LAN, sehingga Anda bisa melakukan transisi secara bertahap.

Berikut saya sampaikan beberapa petunjuk (dari pengalaman dan beberapa rujukan dari online maupun offline) dalam membangun sistem SCADA terutama masalah pemilihan RTU dan MTU.

Apa yang perlu Anda perhatikan dalam memilih SCADA RTU

SCADA RTU Anda harus mampu berkomunikasi dengan segala macam peralatan yang di pabrik dan bisa bertahan terhadap berbagai macam kondisi industri (panas, dingin, tekanan dan lain sebagainya). Berikut ceklis untuk pemilihan RTU yang berkualitas:
• Kapasitas yang cukup untuk mendukung berbagai macam peralatan di pabrik (dalam cakupan SCADA yang diinginkan), tetapi tidak lebih dari yang dibutuhkan. Jangan sampai Anda membeli RTU dengan kapasitas yang berlebih sedemikian hingga akhirnya tidak akan pernah digunakan, ini adalah pemborosan.
• Konstruksi yang tahan banting dan kemampuan bertahan terhadap suhu dan kelembaban yang ekstrim. Sudah jelas khan? Kalo tidak tahan banting dan tidak bisa bertahan buat apa pasang RTU tersebut? Bisa jadi hasil pengukuran menjadi tidak akurat dan alat jebol.
• Catu daya yang aman dan berlimpah. Sistem SCADA seringkali harus bekerja penuh 24 jam setiap hari. Seharusnya digunakan RTU yang mendukung penggunaan daya dari baterei, idealnya, ada dua sumber catu daya (listrik dan baterei).
• Port komunikasi yang cukup. Koneksi jaringan sama pentingnya seperti catu daya. Port serial kedua atau modem internal bisa menjaga agar RTU tetap online walaupun jaringan saat itu sedang rusak atau gagal. Selain itu, RTU dengan port komunikasi beragam dapat mendukung strategi migrasi LAN.
• Memori nonvolatile (NVRAM) untuk menyimpan firmware. NVRAM dapat menyimpan data walaupun catu daya dimatikan. Firmware baru (hasil modifikasi dan lain sebagainya) dapat diunduh ke penyimpan NVRAM melalui jaringan, sehingga kemampuan RTU akan selalu up-to-date (terbaharui) tanpa harus mengunjungi lokasi RTU yang bersangkutan.
• Kontrol cerdas. Sistem SCADA yang canggih saat ini bisa melakukan kontrol dengan sendirinya sesuai dengan program atau pengaturan yang dimasukkan, terutama tanggapan terhadap berbagai macam masukan sensor-sensor. Ini jelas tidak perlu untuk semua aplikasi, namun menawarkan kemudahan operasional.
• Jam waktu-nyata (real-time clock). untuk pencetakan tanggal/waktu pada laporan secara tepat dan akurat;
• Pewaktu watchdog yang memastikan RTU bisa start-ulang setelah terjadinya kegagalan daya (power failure).

Tipikal arsitetur RTU

Apa yang perlu Anda perhatikan dalam memilih SCADA MTU

SCADA master atau MTU harus mampu menampilkan berbagai informasi dalam bentuk yang familiar bagi pengguna atau operator-nya. Beberapa hal yang perlu diperhatikan berkaitan dengan SCADA MTU:
• Fleksibel, tanggapan terhadap sensor bisa diprogram. Cari sistem yang menyediakan perangkat yang mudah untuk memprogram soft alarm (laporan kejadian yang kompleks yang merupakan kombinasi antara masukan sensor dan pernyataan tanggal/jam) dan soft control (tanggapan terhadap sensor yang bisa diprogram).
• Bekerja penuh 24/7, peringatan melalui SMS (pager) dan pemberitahuan email secara otomatis. Anda tidak perlu mempekerjakan orang untuk mengamati papan pemantauan 24 jam sehari. Jika peralatan membutuhkan campur tangan manusia, maka secara otomatis sistem akan mengirimkan peringatan melalui SMS atau email ke penanggung-jawab yang bersangkutan.
• Tampilan informasi secara detil. Tentunya Anda ingin sebuah sistem yang menampilkan dalam bahasa harian Anda (Inggris, Indonesia, dll) yang jelas dan sederhana, dengan penjelasan yang lengkap terhadap aktivitas yang sedang terjadi dan bagaimana Anda seharusnya menangani atau menanggapinya.
• Tapis untuk alarm mengganggu (tidak perlu). Alarm-alarm yang mengganggu akan membuat para staff menjadi tidak peka lagi terhadap pelaporan alarm, dan mereka mulai percaya bahwa semua alarm merupakan alarm menganggu. Akhirnya mereka akan berhenti menanggapi semua alarm termasuk alarm yang kritis (alarm yang benar-benar harus mendapatkan perhatian). Gunakan SCADA yang dapat menapis dan memilah-milah alarm-alarm mana yang mengganggu dan yang kritis.
• Kemampuan pengembangan kedepan. Sebuah sistem SCADA merupakan investasi jangka panjang (10 hingga 15 tahun). Sehingga Anda perlu memastikan kemampuan SCADA untuk pengembangan dalam jangka waktu 15 tahun kedepan.
• Pencadangan yang beragam. Sistem SCADA yang baik mendukung berbagai macam pencadangan master, di beberapa lokasi. Jika master SCADA utama gagal, master yang kedua dalam jaringan akan mengambil alih secara otomatis, tanpa adanya interupsi fungsi pemantauan dan pengontrolan.
• Mendukung berbagai macam tipe protokol dan peralatan. Jika jaman dulu SCADA hanya dbuat untuk protokol-protokol tertentu yang tertutup. Solusi vendor tunggal bukan merupakn ide yang bagus - seringkali vendor tidak lagi menyediakan dukungan untuk produk-produk mereka. Dukungan terhadap berbagai macam protokol yang terbuka akan mengamankan sistem SCADA Anda dari keusangan yang tak-terencana.

Tipikal arsitektur MTU